Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(27): 24351-24361, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457470

RESUMO

Therapies based on mesenchymal stem cells have incredible potential for tissue regeneration. Tracking cells and keeping them at the injury site are creating challenges. The cells can be sown into a biocompatible scaffold as a possible remedy. Tissue engineering construction is a difficult, multistep process that requires many variables to be optimized, including the stem cell source, molecular components, scaffold architecture, and a suitable in vivo animal model. In order to locate a suitable regenerative scaffold for delivering stromal cells to regions with greater healing potential, we assessed whether human Wharton's Jelly-derived mesenchymal stem cells (WJMSCs) responded on biological membranes. WJMSCs were isolated, characterized, and seeded onto an amniotic membrane-based scaffold. Results obtained in vitro revealed that the seeded scaffolds had a significant impact on a number of critical variables, including seeding effectiveness, cellular dispersion, adhesion, survival, and metabolic activity. The research sheds light on a fresh facet of material behavior and paves the way for the creation of scaffold materials that support tissue regeneration and repair. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their healing potential with WJMSCs.

2.
Biol Trace Elem Res ; 201(1): 412-424, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35201568

RESUMO

The effect of green tea (Camellia sinensis) iron oxide nanoparticles (nano-Fe) on the effectiveness, growth, antioxidant capacity, and immunological response of Trichogaster trichopterus (Blue gourami) fingerlings was investigated. UV-Visible, Fourier Transform Infrared, Scanning Electron Microscopy, Energy Dispersive X-ray, X-ray diffraction, Dynamic Light Scattering, and Zeta Potential spectroscopy were used to evaluate the biologically synthesized nano-Fe. Characterization revealed the hexagonal and spherical morphology with an average diameter of 114 nm. Six different experimental diets were supplied to the fish in duplicate for 60 days. The first diet served as a control (no nano-Fe supplementation), whereas the remaining five diets contained nano-Fe at concentrations of 10, 20, 30, 40, and 50 mg/kg (D1 to D5). The results indicated that fish fed a nano-Fe diet at a concentration of 40 mg/kg had improved growth performance, biochemical constituents, hematological parameters, and antioxidant activity in T. trichopterus, implying that it might be used as a vital feed supplement in ornamental fish culture.


Assuntos
Antioxidantes , Camellia sinensis , Animais , Antioxidantes/farmacologia , Peixes , Suplementos Nutricionais , Nanopartículas Magnéticas de Óxido de Ferro
3.
Environ Sci Pollut Res Int ; 29(48): 73528-73541, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35622286

RESUMO

The post-transition semiconducting material of pure zinc sulfide (ZnS) and various concentrations of aluminum (Al) (2.5 wt%, 5.0% wt, 7.5 wt%, and 10% calcined at 200 °C) doped ZnS nanoparticles (NPs) were synthesized by sol-gel procedure. The crystal-like nature and phase structure of the product were examined by powder XRD analysis. This analysis shows that the pure ZnS nanoparticle does not form any secondary phase. The functional group of synthesized materials was analyzed by FTIR examination. The energy gap of the materials is calculated using electro-optic analysis and the Kubelka-Munk equation varies from 3.04 nm to 3.63 nm. The photoluminescence studies show the wide emissions (blue to green) for pure ZnS and Al-doped ZnS nanomaterials. The SEM images show the spherical structure and the agglomerated nanostructures. The presence of Zn, S, and Al are confirmed by EDAX spectra. From HR-TEM studies, pure ZnS and Al-doped ZnS nanoparticles exhibit uniform particle sizes. The rate of degradation was observed using MB dye. MB dye has maximum wavelength (λmax) of 664 nm. The dye degradation efficiency was improved as the dye ratio increased. Photocatalytic activities studies show the intensity of photocatalytic activities decreased for the maximum time interval. Doping of Al in ZnS boosts the photocatalytic activity. Hence, Al-doped ZnS appears to be better decomposing MB dye when exposed to visible light.

4.
Membranes (Basel) ; 12(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629861

RESUMO

The present study was aimed to investigate the effects of sonication and clove oil incorporation on the improvement of physical, antioxidant, and antimicrobial properties and lipid oxidation inhibiting abilities of mung bean flour (MF)-based films. There were three groups of films tested (1) MF: mung bean flour alone, (2) MFC: MF incorporated with 2% clove oil (C), and (3) MFCU: MFC prepared with sonication (25 kHz, 100% amplitude, 10 min). Film thickness and bulk density showed slight differences, and moisture content, solubility, and water vapor permeability significantly differed between the formulations. Tensile strength, elongation at break, and Young's modulus were highest for the MFCU films, followed by MFC and MF in rank order. Furthermore, the Fourier-transform infrared spectroscopy results also demonstrated that the clove oil and sonication treatment had improved the interconnections of the biopolymers, thus increasing the physical strength of the film. Phytochemicals in terms of total phenolics and total flavonoids were elevated in the MFCU films and contributed to stronger radical scavenging abilities (p < 0.05). MFC and MFCU films showed a strong antibacterial control of the Gram-positive Staphylococcus aureus (S. aureus) and also of the Gram-negative Campylobacter jejuni (C. jejuni). Overall, the lipid oxidation indicators Thiobarbituric acid reactive substances (TBARS, peroxide value, p-anisidine value, and totox value) showed significantly high inhibition, attributed to radical scavenging activities in the MFCU and MFC samples. The mung bean flour films incorporated with clove oil and prepared with sonication have good potential as packaging materials for food due to strong physical, antimicrobial, and antioxidant properties, as well as lipid oxidation inhibiting abilities.

5.
Membranes (Basel) ; 12(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35448349

RESUMO

Mung bean (Vigna radiata) flour serves as an excellent biopolymer and a potential material for producing antioxidant and antimicrobial phyto-films. In addition to mung bean flour, this study also combined the longkong (Aglaia dookkoo Griff.) pericarp extract (LPE, 1.5%) and ultrasonication process (0 (C1), 2 (T1), 4 (T2), 6 (T3), 8 (T4), and 10 (T5) min, sonicated at 25 kHz, 100% amplitude) in film emulsion production to improve the antioxidant and antimicrobial efficiency in the phyto-films. This study showed that sonication increased the phyto-films' color into more lightness and yellowness, and the intensity of the color changes was in accordance with the increased sonication time. Alternatively, the thickness, water vapor permeability, and solubility of the films were adversely affected by extended sonication. In addition, elongation at break and tensile strength increased while the Young modulus decreased in the phyto-films with the extended sonication. Furthermore, the droplet size and polydispersity index of the phyto-films decreased with extended sonication. Conversely, the zeta potential of the film tended to increase with the treatments. Furthermore, phytochemicals such as total phenolic content and total flavonoid contents, and the radical scavenging ability of phyto-films against the DPPH radical, ABTS radical, superoxide radical, hydroxyl radical, and ferrous chelating activity, were significantly higher, and they were steadily increased in the films with the extended sonication time. Furthermore, the phyto-films showed a significant control against Gram (-) pathogens, followed by Gram (+) pathogens. A higher inhibitory effect was noted against L. monocytogens, followed by S. aureus and B. subtilis. Similarly, the phyto-films also significantly inhibited the Gram (-) pathogens, and significant control was noted against C. jejuni, followed by E. coli and P. aeruginosa. Regardless of the mung bean flour, this study found that longkong pericarp extract and the sonication process could also effectively be used in the film emulsions to enhance the efficiency of the antioxidant and antimicrobial properties of phyto-films.

6.
Environ Pollut ; 300: 118922, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114308

RESUMO

Contamination of aquatic systems with pharmaceuticals, personal care products, steroid hormones, and agrochemicals has been an immense problem for the earth's ecosystem and health impacts. The environmental issues of well-known persistence pollutants, their metabolites, and other micro-pollutants in diverse aquatic systems around the world were collated and exposed in this review assessment. Waste Water Treatment Plant (WWTP) influents and effluents, as well as industrial, hospital, and residential effluents, include detectable concentrations of known and undiscovered persistence pollutants and metabolites. These components have been found in surface water, groundwater, drinking water, and natural water reservoirs receiving treated and untreated effluents. Several studies have found that these persistence pollutants, and also similar recalcitrant pollutants, are hazardous to a variety of non-targeted creatures in the environment. In human and animals, they can also have severe and persistent harmful consequences. Because these pollutants are harmful to aquatic organisms, microbial degradation of these persistence pollutants had the least efficiency. Fortunately, only a few wild and Genetically Modified (GMOs) microbial species have the ability to degrade these PPCPs contaminants. Hence, researchers have been studying the degradation competence of microbial communities in persistence pollutants of Pharmaceutical and Personal Care Products (PPCPs) and respective metabolites for decades, as well as possible degradation processes in various aquatic systems. As a result, this review provides comprehensive information about environmental issues and the degradation of PPCPs and their metabolites, as well as other micro-pollutants, in aquatic systems.


Assuntos
Cosméticos , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Cosméticos/análise , Ecossistema , Monitoramento Ambiental , Preparações Farmacêuticas , Águas Residuárias/química , Poluentes Químicos da Água/análise
7.
ACS Omega ; 6(51): 35538-35547, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34984285

RESUMO

Mesenchymal stromal cells (MSCs) were isolated from Decidua Basalis (DB) and studied for their final cellular product measures, such as safety, purity, quality, quantity, and integrity that are ascribed as cellular products. This research aimed to isolate MSCs for expansion under the clinical scale level with potency, secretion of cytokines, growth factors secreted by DB-MSCs, and their role in wound healing. Placentas isolated from DB were expanded up to the 10th passage, and their characteristics were assessed by phenotypic characterization using a flow cytometer and analyzed for trilineage differentiation by cytochemical staining. Growth factors (GF), interleukins (IL), chemokines, and tissue inhibitors of metalloproteinases (TIMP) were measured with enzyme-linked immunosorbent assays. The harvested cells from the placenta yield 1.63-2.45 × 104cells/cm2 at P(0), 3.66-5.31 × 104cells/cm2 at P(1), 4.01-5.47 × 104cells/cm2 at P(2), and 3.94-5.60 × 104cells/cm2 at P(10) accordingly; up to 4.74 × 109 P(2) DB-MSCs were harvested within 9-11 days. The viability of the freshly harvested cells was greater than 90% in all cases. It is able to differentiate into chondrocytes, adipocytes, and osteogenic cells, proving their ability to differentiate into a trilineage. Thus, this study put an insight into a secure and conventional approach toward their ability to differentiate into multiple lineages and secrete factors related to immune regulation, making DB-MSCs a potential source in various therapeutic applications.

8.
J Nat Sci Biol Med ; 8(2): 221-228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781492

RESUMO

CONTEXT: Multipotent stromal cells are isolated from various fetal sources and studied for their phenotypic characterization and ability to differentiate into different lineages. AIMS: In this study, we aimed to isolate mesenchymal stem or stromal cells (MSCs) from villous chorion, expand under clinical scale level, compared the potency with other source of fetal-derived MSCs and studied their differentiation capabilities to form all three germ layers. SUBJECTS AND METHODS: Placenta obtained from C-section was used to isolate villous chorion-MSCs (VC-MSCs) were expanded up to tenth passage and their characteristics were assessed by proliferation rate and phenotypic characterization using fluorescence-activated cell sorting and also expanded MSCs were analyzed for differentiated into all three germ layers by cytochemical staining. RESULTS: Stem cell isolated from VC yielded up to 2.16 × 109 cells at second passage and 3.06-4.23 × 104 cells/cm2 at tenth passage. The total yield of cells with all three sources analysis showed that VC has a low yield at second passage compared to amniotic membrane and Wharton's jelly, but the VC-MSCs yield significant amount in lesser days. The phenotypic characterization revealed positive for CD73, CD90, and CD105 and negative for CD79, CD34, CD45, human leukocyte antigen-DR proving their stemness even at tenth passage. They can able to differentiate into ectodermic neural cells, endodermic hepatocytes, and mesodermal differentiation of chondrocytes, adipocytes, and osteogenic cells proving their ability to differentiate into all three germ layers. CONCLUSIONS: This result suggests that the VC-MSCs are ideal source of stem cells with similar characteristics such as other adult stem cells. Thus, VC-derived MSCs can be potential clinical source in regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...